
Pest Management Science Pest Manag Sci 64:781–788 (2008)

Mini-review
Recent developments in the molecular
discrimination of formae speciales of Fusarium
oxysporum
Bart Lievens,1 Martijn Rep2 and Bart PHJ Thomma3∗
1Scientia Terrae Research Institute, Fortsesteenweg 30A, 2860 Sint-Katelijne-Waver, Belgium
2Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands
3Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, 6709 PD Wageningen, The Netherlands

Abstract: Rapid and reliable detection and identification of potential plant pathogens is required for taking
appropriate and timely disease management measures. For many microbial species of which all strains generally
are plant pathogens on a known host range, this has become quite straightforward. However, for some fungal
species this is quite a challenge. One of these is Fusarium oxysporum Schlechtend:Fr., which, as a species, has
a very broad host range, while individual strains are usually highly host-specific. Moreover, many strains of this
fungus are non-pathogenic soil inhabitants. Thus, with regard to effective disease management, identification
below the species level is highly desirable. So far, the genetic basis of host specificity in F. oxysporum is poorly
understood. Furthermore, strains that infect a particular plant species are not necessarily more closely related
to each other than to strains that infect other hosts. Despite these difficulties, recently an increasing number
of studies have reported the successful development of molecular markers to discriminate F. oxysporum strains
below the species level.
 2008 Society of Chemical Industry
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1 INTRODUCTION
Fusarium oxysporum Schlechtend:Fr. is an asexual
fungus that occurs in soils worldwide. As a species, F.
oxysporum includes morphologically indistinguishable
pathogenic as well as non-pathogenic strains. The
latter are defined as strains for which no host plants
have been identified (yet). Pathogenic F. oxysporum
strains can cause vascular wilt or root rot in over 100
plant species, among which are several economically
important crops including banana, bulb flowers,
cucumber, cutting flowers, date palm, melon and
tomato.1 In spite of the broad host range of the species
as a whole, individual strains usually infect only a
single or a few plant species. Therefore, pathogenic
strains have been assigned to formae speciales based on
host specificity, and presently over 70 formae speciales
have been described.2 For example, F. oxysporum f.
sp. cucumerinum and F. oxysporum f. sp. lycopersici only
cause disease on cucumber and tomato respectively.3,4

Some formae speciales have broader host ranges, such
as F. oxysporum f. sp. radicis-cucumerinum and F.
oxysporum f. sp. radicis-lycopersici which, apart from
infecting cucumber and tomato respectively, can cause
root and stem rot on multiple hosts from different plant
families.4–6 Several formae speciales have been further
subdivided into races based on cultivar specificity.2 To

define genetic relationships within formae speciales, F.
oxysporum strains have been grouped into vegetative
compatibility groups (VCGs)7 based on the ability
of strains to form heterokaryons. Strains that belong
to the same VCG normally have identical alleles at
their compatibility loci, enabling the exchange of
nuclear material.8 Therefore, isolates of the same
VCG are usually clonally related, although exceptions
have been reported.9 Many formae speciales, and even
some races, comprise strains that belong to multiple
VCGs,10,11 suggesting independent origins within
the F. oxysporum species complex. Indeed, recent
molecular and genetic studies suggest a polyphyletic
nature for most (if not all) formae speciales that harbour
multiple VCGs, including the f. sp. asparagi, cubense,
cucumerinum, dianthi, gladioli, lini, lactucae, lycopersici,
melonis, opuntiarum, phaseoli, radicis-lycopersici and
vasinfectum.12–19

Currently, no effective curative treatments to
control F. oxysporum exist, and infected plants
should be removed quickly to prevent spread of
the disease. Therefore, most efforts are directed
towards prevention of the disease. In general, effective
means of disease control prior to infection include
soil fumigation, disinfestation of plant material or,
if available, the use of resistant plant cultivars.20
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However, breeding for resistance is complicated when
no dominant resistance locus has been identified
(e.g. for carnation and cyclamen) or with dioecious
host species (e.g. date palm). In addition, new races
may develop that can overcome host resistance.21

Alternatively, fungal presence in the soil can be
controlled by manipulation of the environment in
such a way that growth, sporulation and virulence
of the pathogen decrease, or by reducing its presence
through crop rotation with non-hosts.22 In addition,
biocontrol strategies are being developed using
either non-pathogenic F. oxysporum strains or other
antagonistic microorganisms,20 although for most
of them the efficacy under field conditions is still
unknown. With all these approaches, implementation
of appropriate disease management measures requires
timely detection and reliable identification of the
pathogen. In addition, pathogen quantification is
becoming more and more important, since it serves
as a basis for establishing damage thresholds at which
a pathogen causes disease, and action thresholds that
determine when measures should be taken to limit or
prevent losses.

2 IDENTIFICATION OF PATHOGENIC
FUSARIUM OXYSPORUM ISOLATES
Classically, plant pathogens have been identified on
the basis of morphological features and growth char-
acteristics on specific media. However, because of
their specific limitations, these techniques are increas-
ingly being complemented or replaced by molecular
technologies, of which those based on detection of
pathogen DNA or RNA are the most predominant.23

In general, the molecular techniques are faster, more
specific, more sensitive and more accurate than the
traditional methods, and can be performed and
interpreted by personnel with no specialized taxo-
nomical expertise. In addition, and perhaps even
more importantly, these techniques allow detec-
tion of microorganisms that cannot be cultivated
in vitro.23 The number of pathogens that can be
identified by molecular methods has now expanded
to the extent that only few cannot be accurately
identified. These few mainly comprise subspecies
of a species that, as a whole, is harmless to the
crop of interest, such as F. oxyporum. For these
species, pathogenic and non-pathogenic strains can
usually not be discriminated by targeting the gener-
ally used conserved household genes, which severely
complicates the development of reliable molecular
markers.23,24

Currently, identification of pathogenic F. oxysporum
isolates is mainly based on pathogenicity testing.24

Determination of the forma specialis is generally done
by testing the fungus for pathogenicity on vari-
ous plant species, while races are determined by
pathogenicity assays on different cultivars of a sin-
gle plant species. Although these bioassays are very

effective, they are highly time consuming and labo-
rious. In addition, because of the abundance of
formae speciales, for correct identification, strains must
be inoculated onto a vast number of plant species
and cultivars.20 Therefore, attempts are being made
to replace these methods with molecular identifica-
tion techniques. Ideally, molecular identification of
pathogenic strains is based on diagnostic traits that
are directly linked to pathogenicity.25,26 However, so
far the genetic basis of host specificity in F. oxyspo-
rum is poorly understood. Furthermore, molecular
discrimination of F. oxysporum isolates is compli-
cated by the polyphyletic nature of many forma
specialis.27 Currently, several approaches are being
developed in order to differentiate formae speciales
and races of F. oxysporum. The most important
approaches are based on the use of molecular markers
identified by genotyping or polymerase chain reac-
tion (PCR) amplification of transposon insertions
(Table 1).

2.1 Genotyping: sequence-unbiased
approaches for molecular identification of
pathogenic strains
Multiple genotyping techniques have been used
to identify random sequence differences between
subspecific groups of F. oxysporum,27 including
restriction fragment length polymorphism (RFLP),28

random amplified polymorphic DNA (RAPD)29 and
amplified fragment length polymorphism (AFLP)30

assays. A major drawback of RFLP analysis is its
labour-intensive nature and the need for relatively
high amounts of DNA.31 A major disadvantage often
associated with RAPD assays is poor interlaboratory
reproducibility,32 while AFLP is relatively costly and
a rather complicated technical procedure.31 For these
reasons, diagnostic DNA fragments identified with
these approaches are often converted into more
simple and reliable molecular markers. Sequence-
characterized amplified region (SCAR) primers33 are
then designed specifically to amplify the selected
markers. This approach has proven to be effective
for the identification of several formae speciales and
races of F. oxysporum.15,34–40 However, as these
markers can be localized anywhere in the genome,
there often is little sequence data available in public
databases for comparison with other sequences.
Therefore, extensive screening using a large collection
of strains is necessary to validate the robustness of the
marker.

For F. oxysporum it appears that the anonymous
markers generated by these techniques often corre-
spond to mobile elements. For example, the markers
used by Jiménez-Gasco and Jiménez-Dı́az38 to identify
F. oxysporum f. sp. ciceris race 0, 1A and 6 contain a
fragment that is identical to the Impala transposon,41

while the F. oxyporum f. sp. radicis-cucumerinum marker
developed by Lievens et al.15 shows strong similarity
with Folyt1, a transposable element identified in F.
oxysporum f. sp. lycopersici.42

782 Pest Manag Sci 64:781–788 (2008)
DOI: 10.1002/ps



Identification of formae speciales of F. oxysporum

T
ab

le
1.

P
C

R
p

rim
er

sa
fo

r
th

e
d

et
ec

tio
n

an
d

id
en

tifi
ca

tio
n

of
fo

rm
ae

sp
ec

ia
le

s
an

d
ra

ce
s

of
Fu

sa
riu

m
ox

ys
p

or
um

in
en

vi
ro

nm
en

ta
ls

am
p

le
s

Ta
rg

et
or

ga
ni

sm
Fo

rw
ar

d
pr

im
er

(5
′ -3

′ )
R

ev
er

se
pr

im
er

(5
′ -3

′ )
Ta

rg
et

ge
ne

b
S

pe
ci

fic
ity

c
R

ef
er

en
ce

F.
ox

ys
po

ru
m

f.
sp

.
al

be
di

ni
s

B
IO

3
G

G
C

G
A

TC
TT

G
A

TT
G

TA
TT

G
T-

G
G

TG
FO

A
1

C
A

G
TT

TA
TT

A
G

A
A

A
TG

C
C

G
C

C
Fo

t1
tr

an
sp

os
on

27
0/

28
6;

0/
11

3
48

F.
ox

ys
po

ru
m

f.
sp

.
al

be
di

ni
s

TL
3

G
G

TC
G

TC
C

G
C

A
G

A
G

TA
TA

C
-

C
G

G
C

FO
A

28
A

TC
C

C
C

G
TA

A
A

G
C

C
C

TG
A

A
G

C
Fo

t1
tr

an
sp

os
on

28
6/

28
6;

0/
11

3
48

F.
ox

ys
po

ru
m

f.
sp

.b
as

ilic
i

B
ik

1
A

TT
C

A
A

G
A

G
C

TA
A

A
G

G
TC

C
B

ik
4

TT
TG

A
C

C
A

A
G

A
TA

G
A

TG
C

C
R

A
P

D
-d

er
iv

ed
S

C
A

R
m

ar
ke

r
35

/3
5;

0/
36

35
F.

ox
ys

po
ru

m
f.

sp
.b

as
ilic

i
B

al
3

G
TC

G
A

A
TG

TC
A

A
G

G
A

A
A

G
G

-
C

TC
B

ar
3

C
G

G
C

TC
A

TC
A

G
TT

G
A

TG
G

TA
C

R
A

P
D

-d
er

iv
ed

S
C

A
R

m
ar

ke
r

11
/1

1;
0/

9
40

d

F.
ox

ys
po

ru
m

f.
sp

.
ch

ry
sa

nt
em

i
M

g5
G

G
G

G
TC

G
G

TT
A

C
A

TG
G

G
TG

M
g6

C
A

A
C

A
A

C
A

A
G

G
C

G
A

A
G

A
G

G
G

Fo
t1

tr
an

sp
os

on
9/

9;
0/

26
49

F.
ox

ys
po

ru
m

f.
sp

.
ch

ry
sa

nt
em

i
M

g5
G

G
G

G
TC

G
G

TT
A

C
A

TG
G

G
TG

M
g6

C
A

A
C

A
A

C
A

A
G

G
C

G
A

A
G

A
G

G
G

Fo
t1

tr
an

sp
os

on
10

/1
2;

0/
5

50
e

F.
ox

ys
po

ru
m

f.
sp

.c
ic

er
is

(w
ilt

-in
du

ci
ng

is
ol

at
es

)
W

ilt
-2

TA
TC

A
G

A
G

C
A

TC
TC

C
C

TC
C

C
W

ilt
-1

TG
A

TG
TG

A
G

G
A

C
G

G
C

C
A

G
G

R
A

P
D

-d
er

iv
ed

S
C

A
R

m
ar

ke
r

29
/2

9;
0/

50
39

F.
ox

ys
po

ru
m

f.
sp

.c
ic

er
is

(w
ilt

-in
du

ci
ng

is
ol

at
es

)
W

ilt
N

F-
2

TT
G

TA
TG

G
C

G
TT

G
G

A
G

A
G

G
G

W
ilt

N
R

-2
TT

G
TT

C
A

G
A

TC
G

G
A

A
TC

G
G

G
R

A
P

D
-d

er
iv

ed
S

C
A

R
m

ar
ke

r
4/

4;
0/

2
37

F.
ox

ys
po

ru
m

f.
sp

.c
ic

er
is

Fo
c0

-1
2f

G
G

C
G

TT
TC

G
C

A
G

C
C

TT
A

C
A

A
-

TG
A

A
G

Fo
c0

-1
2r

G
A

C
TC

C
TT

TT
TC

C
C

G
A

G
G

TA
G

-
G

TC
A

G
A

T
R

A
P

D
-d

er
iv

ed
S

C
A

R
m

ar
ke

r
76

/7
6;

0/
93

38

F.
ox

ys
po

ru
m

f.
sp

.c
ic

er
is

ra
ce

0
Fo

cR
0-

M
15

f
G

G
A

G
A

G
C

A
G

G
A

C
A

G
C

A
A

A
G

-
A

C
TA

Fo
cR

0-
M

15
r

G
G

A
G

A
G

C
A

G
C

TA
C

C
C

TA
G

A
T-

A
C

A
C

C
R

A
P

D
-d

er
iv

ed
S

C
A

R
m

ar
ke

r
36

/3
6;

0/
13

3
38

F.
ox

ys
po

ru
m

f.
sp

.c
ic

er
is

ra
ce

1
B

/C
Fo

cR
1B

/C
-N

5f
G

A
G

A
G

C
A

G
G

G
TC

A
G

C
G

TA
G

-
A

TA
G

Fo
cR

1B
/C

-N
5r

G
C

A
G

C
A

G
A

A
G

A
G

G
A

A
G

A
A

A
-

A
TG

TA
R

A
P

D
-d

er
iv

ed
S

C
A

R
m

ar
ke

r
2/

9;
0/

16
0

38

F.
ox

ys
po

ru
m

f.
sp

.c
ic

er
is

ra
ce

5
Fo

cR
5-

L1
0f

G
G

A
A

G
C

TT
G

G
C

A
TG

A
C

A
TA

C
Fo

cR
5-

L1
0r

A
A

G
C

TT
G

G
G

C
A

C
C

C
TC

TT
R

A
P

D
-d

er
iv

ed
S

C
A

R
m

ar
ke

r
10

/1
0;

0/
15

9
38

F.
ox

ys
po

ru
m

f.
sp

.c
ic

er
is

ra
ce

6
Fo

cR
6-

O
2f

G
A

G
C

A
G

TC
A

A
TG

G
C

A
A

TG
G

Fo
cR

6-
O

2r
A

G
A

G
C

A
G

G
G

TC
A

G
C

G
TA

G
A

T-
A

R
A

P
D

-d
er

iv
ed

S
C

A
R

m
ar

ke
r

13
/1

3;
0/

15
6

38

F.
ox

ys
po

ru
m

f.
sp

.c
ic

er
is

ra
ce

1A
an

d
6

Fo
cR

6-
P

18
f

G
G

A
G

A
G

C
A

G
TA

G
A

G
TT

A
C

A
-

G
C

A
G

TA
TT

Fo
cR

0-
M

15
r

G
G

A
G

A
G

C
A

G
C

TA
C

C
C

TA
G

A
-

TA
C

A
C

C
R

A
P

D
-d

er
iv

ed
S

C
A

R
m

ar
ke

r
16

/1
6;

0/
15

3
38

F.
ox

ys
po

ru
m

f.
sp

.
cu

cu
m

er
in

um
Fo

cF
1

TC
A

A
C

G
G

G
A

C
A

C
TT

TA
TG

TT
C

Fo
cR

2
TC

A
A

C
G

G
G

A
C

TC
C

C
TT

C
G

R
A

P
D

-d
er

iv
ed

S
C

A
R

m
ar

ke
r

46
/4

6;
2/

22
7

15

Pest Manag Sci 64:781–788 (2008) 783
DOI: 10.1002/ps



B Lievens, M Rep, BPHJ Thomma

T
ab

le
1.

C
on

tin
ue

d

Ta
rg

et
or

ga
ni

sm
Fo

rw
ar

d
pr

im
er

(5
′ -3

′ )
R

ev
er

se
pr

im
er

(5
′ -3

′ )
Ta

rg
et

ge
ne

b
S

pe
ci

fic
ity

c
R

ef
er

en
ce

F.
ox

ys
po

ru
m

f.
sp

.d
ia

nt
hi

ra
ce

1
an

d
8

Ft
3

G
G

C
G

A
TC

TT
G

A
TT

G
TA

TT
G

T-
G

G
TG

R
8.

1
C

G
A

TG
A

A
G

TC
G

G
TT

TG
C

G
A

TT
Fo

t1
tr

an
sp

os
on

29
/2

9;
0/

61
51

F.
ox

ys
po

ru
m

f.
sp

.d
ia

nt
hi

ra
ce

2
Ft

3
G

G
C

G
A

TC
TT

G
A

TT
G

TA
TT

G
T-

G
G

TG
R

2.
1

C
TT

G
TT

TC
TC

G
A

TT
TC

TG
TC

TC
-

A
C

G
Fo

t1
tr

an
sp

os
on

22
/2

2;
2/

68
51

F.
ox

ys
po

ru
m

f.
sp

.d
ia

nt
hi

ra
ce

4
IM

P
2

A
A

TC
C

TA
TA

G
A

G
A

A
TC

TG
TG

G
R

4.
2

G
G

TG
A

TT
G

G
A

G
G

A
G

G
A

A
TA

C
C

Im
pa

la
tr

an
sp

os
on

19
/1

9;
0/

71
51

F.
ox

ys
po

ru
m

f.
sp

.g
la

di
ol

i
ra

ce
1

E
C

A
G

C
TC

A
C

G
A

C
C

TG
TA

G
T

F
C

A
G

C
TC

A
C

G
A

TG
G

G
A

A
TC

R
A

P
D

-d
er

iv
ed

S
C

A
R

m
ar

ke
r

33
/3

6;
3/

23
36

F.
ox

ys
po

ru
m

f.
sp

.l
ac

tu
ca

e
ra

ce
1

H
an

i3
′

C
C

C
TC

C
A

A
C

A
TT

C
A

A
C

A
A

C
TG

H
an

ila
tt3

re
v

A
TT

C
A

C
TG

TA
C

A
C

C
A

A
C

C
TT

TT
In

te
r-

re
tr

ot
ra

ns
po

so
n-

de
riv

ed
S

C
A

R
m

ar
ke

r
69

/6
9;

0/
63

55

F.
ox

ys
po

ru
m

f.
sp

.l
yc

op
er

si
ci

(ra
ce

1,
2

an
d

3)
P

12
-F

2
G

TA
TC

C
C

TC
C

G
G

A
TT

TT
G

A
G

C
P

12
-R

1
A

A
TA

G
A

G
C

C
TG

C
A

A
A

G
C

A
TG

S
ec

re
te

d
in

xy
le

m
1

(S
IX

1)
4/

4;
0/

8f
64

F.
ox

ys
po

ru
m

f.
sp

.l
yc

op
er

si
ci

(ra
ce

2
an

d
3)

S
p2

3f
C

C
TC

TT
G

TC
TT

TG
TC

TC
A

C
G

A
S

p2
3r

G
C

A
A

C
A

G
G

TC
G

TG
G

G
G

A
A

A
A

E
nd

o
po

ly
ga

la
ct

ur
on

as
e

(p
g1

)
16

/1
6;

2/
53

57

F.
ox

ys
po

ru
m

f.
sp

.p
ha

se
ol

i
(h

ig
hl

y
vi

ru
le

nt
is

ol
at

es
)

B
31

0
C

A
G

C
C

A
TT

C
A

TG
G

A
TG

A
C

A
T-

A
A

C
G

A
A

TT
TC

A
28

0
TA

TA
C

C
G

G
A

C
G

G
G

C
G

TA
G

TG
-

A
C

G
A

TG
G

R
A

P
D

-d
er

iv
ed

S
C

A
R

m
ar

ke
r

15
/1

5;
0/

19
34

F.
ox

ys
po

ru
m

f.
sp

.
ra

di
ci

s-
cu

cu
m

er
in

um
Fo

rc
F1

G
G

TG
A

C
G

C
A

G
C

A
G

TC
TA

G
A

Fo
rc

R
2

G
TG

A
C

G
C

A
G

G
G

TA
G

G
C

A
T

R
A

P
D

-d
er

iv
ed

S
C

A
R

m
ar

ke
r

28
/2

8;
0/

24
5

15

F.
ox

ys
po

ru
m

f.
sp

.
ra

di
ci

s-
ly

co
pe

rs
ic

i
sp

rlf
G

A
TG

G
TG

G
A

A
C

G
G

TA
TG

A
C

C
sp

rlr
C

C
A

TC
A

C
A

C
A

A
G

A
A

C
A

C
A

G
G

A
E

xo
po

ly
ga

la
ct

ur
on

as
e

(p
gx

4)
9/

9;
1/

60
57

a
U

nl
es

s
ot

he
rw

is
e

in
d

ic
at

ed
,P

C
R

p
rim

er
s

w
er

e
us

ed
in

co
nv

en
tio

na
lP

C
R

as
sa

ys
.

b
R

A
P

D
,r

an
d

om
am

p
lifi

ed
p

ol
ym

or
p

hi
c

D
N

A
;S

C
A

R
,s

eq
ue

nc
e

ch
ar

ac
te

riz
ed

am
p

lifi
ed

re
gi

on
.

c
S

p
ec

ifi
ci

ty
of

th
e

p
rim

er
s

is
re

p
re

se
nt

ed
b

y
th

e
ra

tio
of

co
rr

ec
tly

id
en

tifi
ed

ta
rg

et
st

ra
in

s
ve

rs
us

th
e

to
ta

l
nu

m
b

er
of

te
st

ed
ta

rg
et

st
ra

in
s

an
d

b
y

th
e

ra
tio

of
w

ro
ng

ly
id

en
tifi

ed
st

ra
in

s
ve

rs
us

th
e

to
ta

l
nu

m
b

er
of

no
n-

ta
rg

et
st

ra
in

s.
d

P
rim

er
s

w
er

e
co

m
b

in
ed

w
ith

Ta
q

m
an


p

ro
b

e
‘B

as
il’

(5
′ -C

C
A

A
TT

C
TC

C
C

G
A

G
TG

TA
TC

A
A

G
G

A
-3

′ )
in

a
re

al
-t

im
e

P
C

R
as

sa
y.

e
P

rim
er

s
w

er
e

co
m

b
in

ed
w

ith
Ta

q
m

an


p
ro

b
e

‘M
ar

ge
’(

5′
-T

A
A

G
C

A
G

G
C

G
A

G
TC

C
TT

G
A

TT
TG

A
T-

3′
)i

n
a

re
al

-t
im

e
P

C
R

as
sa

y.
f
S

p
ec

ifi
ci

ty
of

th
e

as
sa

y
w

as
re

ce
nt

ly
co

nfi
rm

ed
b

y
an

ex
te

ns
iv

e
sc

re
en

in
g

on
28

7
F.

ox
ys

p
or

um
is

ol
at

es
fr

om
va

rio
us

fo
rm

ae
sp

ec
ia

le
s.

A
ll

of
77

F.
ox

ys
p

or
um

f.
sp

.
ly

co
p

er
si

ci
is

ol
at

es
w

er
e

co
rr

ec
tly

id
en

tifi
ed

.N
o

cr
os

s-
re

ac
tio

n
w

ith
ot

he
r

is
ol

at
es

w
as

ob
se

rv
ed

(L
ie

ve
ns

et
al

.,
un

p
ub

lis
he

d
re

su
lts

).

784 Pest Manag Sci 64:781–788 (2008)
DOI: 10.1002/ps



Identification of formae speciales of F. oxysporum

2.2 Transposons: sequence-biased targets for
molecular identification of pathogenic strains
Transposons are discrete DNA segments that are
able to jump or replicate to other locations within a
genome. They are ubiquitous in virtually all organisms
examined, and are a common cause of spontaneous
genetic changes that can affect the biology of the
organism.43 Although the genome of F. oxysporum is
still largely uncharacterized, at least 5% is estimated to
be composed of transposons.44 Among these are both
class-I and class-II transposons, the first mobilizing
via retroposition (via an RNA intermediate) and the
second via a DNA cut-and-paste mechanism.45,46

Class-II transposons are reported to play an important
role in the evolution of fungal genomes47 and have
been used for various research purposes, including
knockout mutagenesis and variability analysis.46 In
some cases, pathogenicity of F. oxysporum isolates
could be linked to the presence of certain transposons.
For example, a specific insertion of the Fot1 transposon
has been exploited to develop specific markers for
F. oxysporum f. sp. albedinis,48 as well as for a new
VCG of F. oxysporum f. sp. chrysanthemi highly
pathogenic on Paris daisy (VCG 0052).49,50 In
addition, this transposon provided the source of
target sequences to discriminate certain races of F.
oxyporum dianthi (races 1, 2 and 8),51 whereas a
copy of the transposon Impala was used to identify
race 4 strains of this forma specialis.51 Furthermore,
the transposable element Palm displayed suitable
variability for population analysis of F. oxysporum f. sp.
elaeidis.52 Apart from these class-II transposons, class-I
transposons such as Foxy have also been proposed for
the discrimination of F. oxysporum formae speciales and
races.26,53 This abundant retrotransposon (200–300
copies per genome) was used to construct the first
mitotic linkage map of F. oxysporum.54 In addition,
the genomic regions between the insertions of long
terminal repeat retrotransposon copies were used to
develop a diagnostic assay for F. oxysporum f. sp.
lactucae race 1 strains based on inter-retrotransposon
amplified polymorphisms.55

Because class-II transposons can move around in
the genome through complete excision,46 inactivity of
the transposable element should be verified in order
to be used as a molecular marker for reliable pathogen
diagnosis.15,48,51 Analysis of a large collection of
strains, preferably isolated from different geographic
areas and at different time points, should reduce the
risk of selecting an instable transposon.51 Apart from
this, incomplete copies, either truncated or containing
internal deletions, are often inactive.56

2.3 VIRULENCE GENES: IDEAL TARGETS FOR
MOLECULAR IDENTIFICATION
Virulence of a plant pathogen may be attributed to
subtle nucleotide differences in a specific gene.57,58

Alternatively, virulence of a pathogen may be
determined by the unique presence of a specific gene

or a set of genes that confer a specific trait to the
pathogen, such as the production of a host-specific
toxin.59,60 Pathogenicity of Nectria haematococca Berk.
& Broome [anamorph Fusarium solani (Mart.) Sacc.]
mating population VI, which is pathogenic to garden
pea, depends on a set of virulence genes that include
the pea pathogenicity (PEP)1, PEP2, and PEP5 genes,
and the pisatin demethylase (PDA)1 gene, which are all
present on a conditionally dispensable chromosome.61

These genes are absent in related species, except in
Neocosmospora boniensis and some formae speciales of F.
oxysporum.62 In N. boniensis, homologues of all genes
were found, whereas PDA1 was present in only some
isolates of F. oxysporum. Further analysis revealed that
N. boniensis strains and one of the PDA1-containing
F. oxysporum isolates were indeed able to infect pea,62

suggesting a link between the presence of PDA1 and
virulence on pea.

A similar observation has been reported for F.
oxysporum f. sp. lycopersici. In this polyphyletic forma
specialis, the secreted in xylem (SIX)1 gene, encoding
a small cysteine-rich secreted protein, contributes
to full virulence on tomato.63,64 Apart from SIX1,
additional fungal proteins were identified from xylem
sap of infected tomato plants, of which most of
the corresponding (SIX) genes are present on the
same chromosome.60,65 The unique presence of
these genes in F. oxysporum f. sp. lycopersici was
recently determined when screening 287 F. oxysporum
isolates from various formae speciales (Lievens et al.,
unpublished results). Most of the SIX genes were
found to be present in all isolates that belong to
the forma specialis lycopersici irrespective of race and
clonal lineage, but not in other formae speciales or non-
pathogenic isolates63,64 (Lievens et al., unpublished
results). The strong link between this group of genes
and pathogenicity on tomato makes them excellent
markers for host-specific pathogenicity.

The presence of this gene cluster also sheds
new light on the possible origin of host specificity.
Since F. oxysporum f. sp. lycopersici does not have a
monophyletic origin,17 the ability to cause tomato wilt
disease must have evolved multiple times. The finding
that all F. oxysporum f. sp. lycopersici isolates, but
not those that belong to closely related subspecies,
contain most of the SIX genes that are located
on the same chromosome suggests spread of this
chromosome from one clonal line to another, possibly
through horizontal gene transfer.60 The importance of
this mechanism for the exchange of virulence traits
between plant pathogenic fungi has recently been
demonstrated.59 In addition, the fact that the SIX
genes are absent in closely related subspecies suggests
that they are dispensable for saprophytic growth and
for infection of other hosts.64 Furthermore, selection
against such virulence genes may occur as well,
especially since virulence factors are often secreted
proteins that are known for their predisposition
to trigger resistance in plants through gene-for-
gene recognition mechanisms.66 Indeed, SIX1 is the
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avirulence factor that matches the I-3 resistance gene
in tomato.64 Because the same protein can act as a
virulence factor in one host plant and as an avirulence
factor in another,66,67 not only host cultivar-specific
disease resistance but possibly also resistance of non-
host plants can be achieved by recognition of secreted
proteins.

The clustering of genes involved in virulence on
a specific host resembles the situation that occurs
with pathogenicity islands, chromosomal regions that
typically contain a high number of repetitive elements
interspersed between virulence genes.61 Indeed, the
F. oxysporum f. sp. lycopersici chromosome containing
the SIX genes is likewise found to be rich in
transposon sequences,64 which may explain why
specific transposons are linked to pathogenicity. This
also implies that transposon-based markers can be
used to identify a polyphyletic forma specialis if they are
localized on such ‘pathogenicity chromosomes’.

3 CONCLUDING REMARKS
Although molecular methods provide many advan-
tages over traditional plant pathogen detection and
identification methods,23 nucleic acid-based meth-
ods are not yet widely implemented for routine plant
pathogen diagnosis. Several reasons may explain this
slow uptake, including the lack of pathogen quantifica-
tion and multiplexing capabilities of most assays.25,68

However, increasingly novel molecular methods are
being developed that can meet these demands, of
which real-time PCR and DNA array technology
are currently the most suitable accurately to quan-
tify pathogen densities and detect a large variety of
microorganisms respectively.23

As discussed in this review, another important
limitation in molecular plant pathogen diagnosis is
the inability to differentiate pathogenic from non-
pathogenic strains that belong to the same microbial
species. This applies not only to F. oxysporum but also
to fungi like F. solani (Martius) Sacc. and Rhizoctonia
solani Kuhn.24 As long as no molecular markers
are available to discriminate pathogenic subspecies,
pathogenicity tests remain the only means to determine
whether or not a given isolate is pathogenic on
a specific crop. The increasing number of studies
reporting the successful development of molecular
markers to discriminate F. oxysporum strains below the
species level (Table 1) is therefore highly important.
A DNA array containing genus-, species- and forma
specialis-specific detector oligonucleotides has recently
been developed for the detection and identification of
F. oxysporum f. sp. cucumerinum and F. oxysporum
f. sp. radicis-cucumerinum.15 While the genus- and
species-specific oligonucleotides were derived from
the ubiquitous ribosomal RNA gene cluster, robust
RAPD-derived SCAR markers were implemented
in the assay to specifically identify the different
formae speciales. Taking into account the almost
unlimited expanding possibilities of DNA arrays, a

comprehensive DNA array for the identification of
all formae speciales (and possibly even races) of F.
oxysporum may ultimately be realized. In addition,
since hybridization signals are proportional to the
quantity of target DNA,69 this technique is suitable
for decision-making in plant disease management.
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